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Abstract 
 

The synchronous phasor measurement algorithm is the core content of the phasor 
measurement unit. This manuscript proposes a dynamic synchronous phasor measurement 
algorithm based on compressed sensing theory. First, a dynamic signal model based on the 
Taylor series was established. The dynamic power signal was preprocessed using a least 
mean square error adaptive filter to eliminate interference from noise and harmonic 
components. A Chirplet overcomplete dictionary was then designed to realize a sparse 
representation. A reduction of the signal dimension was next achieved using a Gaussian 
observation matrix. Finally, the improved orthogonal matching pursuit algorithm was used to 
realize the sparse decomposition of the signal to be detected, the amplitude and phase of the 
original power signal were estimated according to the best matching atomic parameters, and 
the total vector error index was used for an error evaluation. Chroma 61511 was used for the 
output of various signals, the simulation results of which show that the proposed algorithm 
cannot only effectively filter out interference signals, it also achieves a better dynamic 
response performance and stability compared with a traditional DFT algorithm and the 
improved DFT synchronous phasor measurement algorithm, and the phasor measurement 
accuracy of the signal is greatly improved. In practical applications, the hardware costs of 
the system can be further reduced. 
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1. Introduction 

With the development of power systems, a smart grid has become the focus of attention 
globally. A smart grid (SG) is a data communications network which is integrated with the 
power grid to collect and analyze data that are acquired from transmission lines, distribution 
substations, and consumers[1]. SG is based on an integrated and high-speed two-way 
communication network, applying advanced sensing and measurement technology, 
equipment technology, control methods, and decision support systems to realize a reliable, 
safe, economical, efficient, friendly, and safe grid[2, 3]. The core of a smart grid mainly 
includes the following aspects: a real-time collection and transmission of the power system 
data using sensors [4], a data integration system, and a data collection system [5, 6]. In 
addition, it has the ability to conduct a self-analysis, that is, based on data developed to carry 
out a relevant analysis for optimizing the operation and management of the grid. The 
configuration of a number of sensors in a smart grid directly affects the cost input [7]. We 
hope we can achieve a balance between cost, data communications delay, and energy[8]. 

As an important platform for a real-time estimation and the dynamic monitoring of the 
smart grid status, wide area measurement systems (WAMS) have been widely used in power 
system security and stability control, system parameter identification, and fault analysis [9]. 
The core of WAMS is the phasor measurement unit (PMU) based on global positioning 
technology, which can realize the synchronous transmission, measurement, and analysis of 
phasors in the power system. The PMU is the most important component for obtaining 
dynamic real-time monitoring data and an accurate system estimation [10, 11]. To a large 
extent, the accuracy of a PMU device depends mainly on the algorithm applied. It is 
therefore important to improve the accuracy and reliability of the synchronous phasor 
measurement algorithm. 

At present, many synchronous phasor measurement algorithms have been widely used, 
such as the discrete Fourier transform (DFT) method [12, 13], zero-crossing detection 
method [14, 15], and a digital filter method [16, 17]. Because the DFT algorithm is suitable 
for fast computations and has good harmonic suppression characteristics, it has an increased 
value of application under static conditions, hence its wide use in synchronous phasor 
measurements. However, DFT-like algorithms also have certain drawbacks. For example, 
when the system operates under asynchronous sampling, the existing DFT algorithm tends to 
produce errors in the amplitude and phase measurements, and such errors increase sharply 
with the increase in asynchronization, resulting in frequency spectrum leakage and a fence 
effect. These results fail to meet the requirements of the actual application [18]. Moreover, 
the existing DFT algorithm is often affected by the dynamic conditions of the system, such 
as low-frequency oscillations, resulting in large errors in the phasor measurements, 
increasing the difficulty to meet the needs of practical applications [19]. 

In manuscript [20] based on the improved DFT algorithm, a phase angle error equation 
has been deduced. Using the phase angle difference to track the measurements of the signal 
frequency, the DFT results from tracking the frequency are divided into an integer part and 
score, and through the equivalent replacement of the fractional part a correction is carried out 
to reduce the errors from the frequency spectrum leakage and fence effect. 

In addition, the authors of [21] designed a complex bandpass filtering algorithm based 
on a Gaussian window decoupling modulation function, which has good stability and 
response speed. In [22], using the Taylor series and a strong tracking filter, a strong tracking 
Taylor–Kalman filter (STKF) dynamic phasor measurement method with good measurement 
accuracy is proposed. 
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The above methods have their own characteristics, but based on the fundamental 
principle, the common point is that the Nyquist sampling theorem is used to synchronously 
collect the voltage and current signals of different nodes and busbars in the system. For a 
high sampling frequency, this is bound to bring about huge amounts of data, putting heavy 
pressure on the real-time transmission and processing of the signals. 

To adapt to the dynamic conditions of a power system, this manuscript proposes a new 
algorithm for optimizing the synchronous phasor measurements based on the Taylor series 
and compressive sensing technology. The core idea of this method is to establish a dynamic 
signal model based on the Taylor series, and effectively filter out the interference 
components through preprocessing. A phasor optimization measurement of the power signal 
is then realized using compressed sensing. Compared with the traditional DFT algorithm and 
the improved DFT algorithm in [20], the compressed sensing used in this manuscript can 
significantly reduce the amount of data collection, improve the operation efficiency of the 
system, and avoid a spectrum leakage and fence effect. The method not only effectively 
improves the accuracy of the phasor measurement, it also improves the anti-interference and 
dynamic performance of the algorithm, reduces the number of iterations in the signal 
processing, and lays a good foundation for the application of synchronous phasor 
measurement devices in WAMS. 

2. Power Signal Dynamic Model 
According to the IEEE C37.118-2005 standard [23], the standard form of a power signal is 
 

 ( ) cos(2 )π φ= +x t A ft  (1) 
 

where A is the amplitude, f  is the fundamental frequency, and φ  is the initial phase 
angle. 

It can be seen from equation (1) that this form can only characterize a static signal 
model whose amplitude and phase parameters do not change. In practice, because a power 
system often undergoes dynamic changes, the amplitude and phase of the signal will change. 
The traditional static signal model cannot accurately represent the time-variance of the 
fundamental signal component. Therefore, this manuscript attempts to use the complex 
signal ( )X t  to characterize the dynamic phasor of the power signal. Thus, equation (1) can 
be expressed as a complex exponential function. 

 

 ( ) 2 21( ) ( )
2

π π
∗

− = + 
 

j ft j ftx t X t e X t e   (2)   

where 
               ( ) ( )( ) 2 φ= j tX t A t e  (3) 
 

In equation (3), ∗  is the conjugation,  ( )A t  and ( )φ t  are the amplitude and phase of 
a dynamic signal, respectively, at moment t . 

For the sake of analysis, this manuscript used the Taylor series to approximate the 
power magnitude ( )A t  and phase ( )φ t  of a signal at moment t , as follows. 
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Here, 0A  is the power signal amplitude at a reference time 0t . 0t  is usually equal to 
the center time of the sampled data window, ( )nA  is ( )A t  at the n order derivative of time 

0t , 0φ  is the power signal phase of reference time 0t  , and ( )φ n  is ( )φ t  at the  n  order 
derivative of time 0t . 

According to the approximate characteristics of the Taylor series, the larger the value of 
n  is, the closer the polynomial is to the target function, i.e., the larger of n  is, the closer 
the values of ( )A t  and ( )φ t  are to the true phasor value at moment t . However, when the 
value of n  increases, the number of computations increases as well, which delays the 
phasor measurement algorithm. Under normal circumstances, it can be considered that the 
parameter change of the power signal under dynamic conditions is slow, and the low-order 
derivative can represent the dynamic characteristics of the signal. Therefore, in this 
manuscript, let =1n  ; Thus, the first-order Taylor series is used to approximate the phase 
value, i.e., 
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with 'A  and 'φ  representing the magnitude and phase of the power signal of the first 

derivative at reference moment 0t . 
Thus, an approximate model of the dynamic signal of the power system can be 

obtained. 
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3. Dynamic Synchronous Phasor Measurement Algorithm Based on 
Compressed Sensing 

To improve the measurement accuracy of the algorithm and save system space and cost, this 
paper proposes a dynamic synchronous phasor measurement algorithm based on 
compressive sensing. The overall process of the algorithm is described below. 

3.1 Pretreatment 
In a power grid, noise is one of the important factors affecting the measurement of the power 
system signal for a synchronous phasor measurement. Particularly when the system is under 
dynamic conditions, a large amount of noise contained in the signal will seriously affect the 
accurate measurement of the parameters, such as the amplitude and phase. In addition, when 
the system fails, it often causes a large amount of harmonic components to be generated in 
the voltage and current signals, which will also drastically reduce the measurement accuracy 
of the phasor. Therefore, in this manuscript an adaptive filter is applied based on the least 
mean square (LMS) criterion [24] to preprocess the power signal, thus filtering out 
interference signals such as noise and harmonics. 

LMS adaptive filters are widely used in the field of power systems owing to their 
simplicity, robustness, and ease of implementation. In the process of filtering a signal, the 
signal model of the power system is set as follows: 

 
 ( ) ( ) ( )x n s n v n= +  (8)  
 
Here, ( )x n  represents complex power signals containing harmonics or noise, ( )s n  

represents the ideal power signal, and ( )v n  represents Gaussian white noise or the 
harmonic components, which are independent of the ideal power signal. In an adaptive filter 
based on the LMS criterion, the main idea is to minimize the mean square error ( )e n  
between the filter’s output signal ( )y n  and the expected output signal ( )d n . Therefore, 
complex power signals containing components such as harmonics or noise are input into the 
filtering system and estimated, the process of which is mainly divided into the following 
steps: 

 
 
1) Filtering process. 

 
 ( ) ( ) ( )Ty n w n x n=  (9) 

 
In the formula, ( )y n  represents the output signal at time n, and ( )w n  represents the 

filter weight factor. 
 
2) Error calculation process. 
 
In the filtering process, assuming that the expected output signal  ( )d n  is known, the 

error between the expected signal and the output signal can then be calculated. 
 
 ( ) ( ) ( )e n d n y n= −  (10) 
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The mean square error of which is: 
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Next, the following is solved: 
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Here, M  represents the number of iterations of the LMS algorithm, and J
∧
∇  

represents the gradient of M iterations. 
 
3) Update the filter coefficient 
 

 ( )( 1) ( ) 2 -
( ) 2 ( ) ( )

w n w n J
w n e n x n

µ
µ

+ = + ∇

= +
  (13) 

 
In (13), µ  represents the step length factor, and   
 

 J J
∧

∇ ≈ ∇  (14) 
 
Therefore, through equations (9), (10), and (13) above, the effective power signal 

output by the filter system can be obtained, and the effective power signal is determined to 
be close to the ideal signal. 

3.2 Algorithm implementation 
The dynamic synchronous phasor measurement algorithm based on compressive sensing 
theory designed in this manuscript mainly uses an overcomplete dictionary to realize the 
sparse decomposition of the original power signal, and it matches the tracking using an 
iterative algorithm, thus achieving an accurate measurement of the phasor value. 

3.2.1 Principle of the algorithm 
In a large power system, although the voltage and current signals have complex and 
changeable characteristics, the main purpose of synchronous phasor measurements of the 
power signals is to obtain the amplitude and phase information of the fundamental wave 
components. Gabor atoms are commonly used to decompose a sparse signal, the expression 
of which is as follows: 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 1, January 2020                59 

 1( ) ( )cos( )t ug t g t
ssg ε φ−

= +  (15) 

 
Here, ( )g tg  represents Gabor atoms defined by the cosine function parameter set γ ;

( )g t  represents the Gaussian window function; s  is the scaling factor; u  is the 
displacement factor, which is the center of time; ε  is the modulation factor, i.e., the 
frequency center; φ  represents the phase parameter; And ( )= , ,s uγ ε  is the set of atomic 
parameters. 

The frequency of Gabor atoms does not change with time, but the frequency of power 
system signals often fluctuates near the power frequency, if the power system signal is sparse 
by the Gabor atoms, many combinations of Gabor atoms are needed to approximate the 
dynamic spectrum characteristics of the signal. Thus, in this manuscript, a Chirplet sparse 
dictionary with a slope factor was constructed to sparse the signal. Compared with the 
traditional overcomplete Gabor dictionary, the waveform library composed of 
four-parameter Chirplet atoms can more effectively represent the time-varying signal [25] 

and the number of iterations of signal processing for various power systems is significantly 
reduced. 

The design process is as follows: 
 

 

21 1( )exp( ( ( ) ( ) ))
2

l
p l q l

i i

t ug g j t u c t u
s sg x−

= − + −
 

(16)
 

 
In the formula, ( )g tg  represents the Chirplet atoms defined by parameter set γ ; ( )g t  
represents the Gaussian window function; is  is the scaling factor; 1, 2, ,= i I  ; lu  is the 
displacement factor; 1,2, ,l L= 

; pξ  is the frequency shift factor; 1,2, ,p P=  ; qc  

represents the linear frequency modulation factor; 1,2, ,q Q=   ; ( )= , , ,i l p qs u cγξ   is the set 
of atomic parameters; t  is the time parameter; and 0,1, , -1= t N . According to the 
application conditions of the algorithm, the search range of , , , and qc  is 
provided, and the value is evenly selected according to a certain search precision.  

The set of atomic parameters ( )= , , ,i l p qs u cγξ   can form atoms with different 

characteristics. For example, when 1i l p q= = = = , there is ( )1 1 1 1= , , ,γξ s u c . At this point, an 
atom 

0
gg  in the overcomplete atomic library is formed: 

 

 
0

21
1 1 1 1

1 1

1 1( )exp( ( ( ) ( ) ))
2

t ug g j t u c t u
s sg x−

= − + −
 

(17) 

 
By analogy, we can build a library of atoms with different characteristics. In addition, 

when building a complete atomic library, it is also necessary to pay attention to the 
normalization of the atom, i.e., =1γγ , with ⋅  representing the norm of the signal, which 
is defined as the distance of the signal (a point in the space) to the origin of the spatial 
coordinate (corresponding to the 0 signal) in the N  dimensional Hilbert space NR . 

is lu px
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Therefore, for an N × 1 dimensional power signal x , we have 
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In the formula, NnD  is the N-th element of the n-th atom, γ n

γ  is the n-th atom in the 
atomic library, the number of atoms in the entire atomic library is n = ILPQ, and n>>N, 
which satisfies the overcomplete feature of the dictionary. 
Through the Chirplet overcomplete atomic library D  in the above process, the original 
power signal x  becomes sparse. This process can be expressed as 
 
 x Da=      (19)              
where a is a sparse vector. 

To reduce the transmission and storage burden of the system, this paper proposes a 
Gaussian random matrix Φ  to construct the observation matrix and obtain a small amount 
of measurement data y . Let the observation matrix be ( )×Φ∈ <<M NR M N , the 
measurement vector is y x= Φ , namely, 
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  (20)     

 
This process realizes the dimensionality reduction projection of the original power 

signal x  from N to M dimensions, thus achieving the purpose of the data compression. 
The sparse decomposition algorithm is the core component of the entire algorithm. In 

this manuscript, the orthogonal matching pursuit (OMP) algorithm [26] was used to achieve 
the purpose of decomposing the measured signal. The basic idea is to select the atoms gg  
that best match the signal y  to be decomposed from the overcomplete atomic library, 
thereby achieving the parameter estimation of the fundamental component, the specific 
process of which is as follows:  

Step 1: Set the decomposition parameters according to the dynamic condition of signal 
y to be decomposed, given the search range of each decomposition parameter of , , , 
and qc .  

Step 2: Build the atomic library according to equations (16) and (18), and construct an 
over-complete atomic library { }( , , , )i l p qD g s u cg g ξ= ∈  with different characteristics. 

Step 3: Conduct the best atomic search. Search for the atom with the largest inner 
product with the signal y , which is the best atom 

k
gg , where k is the number of 

decomposition, 0y  is the original signal y , and when 1k > , ky  is the residual error 
signal. In the process of obtaining the best matching atom, owing to the characteristics of the 

is lu px
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sparse signal decomposition, the signal to be decomposed will reach the maximum match on 
a certain component when conducting an OMP decomposition, the optimal atomic search 
threshold condition is as follows: 

 

 , sup ,
k vk ky g y gg g

g∈Γ
=  (21)         

 
where ,

kky gg  
is the inner product of the decomposed signal y  and its best match atom 

γ k
γ , 0,1,v k=  . 

Step 4: Decompose the signal. The optimal atom obtained by the search conducted in 
step 3 sparsely decomposes signal or residual signal, the signal can be expressed as: 

 
 1,

k kk k ky y g g yg g += +  (22) 
 
Where 1ky +  is the new residual signal. 

Step 5: Calculate the residual signal. The residual signals after a sparse decomposition 
can be obtained using the difference between the original signal and the inner product of 
successive iterations:  

 
1 11

0
,

k k

k

k k
v

y y y g gg g+ ++
=

= −∑  (23) 

 
Step 6: Judge the threshold. Considering the time complexity and practicability of the 

algorithm, sparse decomposition sets two termination thresholds of the maximum 
decomposition number termination and minimum residual signal termination. If the 
decomposition times reach the preset upper threshold or the residual signals reach the preset 
lower threshold, the decomposition is terminated; otherwise, return to step 3. Therefore, the 
final signal of the complete decomposition process can be expressed as follows: 

 

 1
0

,
k k

n

n
k

y y g g yg g +
=

= +∑  (24) 

 
After the signal y is obtained, the original signal x can be obtained through the signal’s 

matching pursuit. In the process of finding the best matching atom, to make the atomic 
library contain as many atomic numbers and types as possible, the process computations are 
extensive. Therefore, this manuscript uses the fast Fourier transformation (FFT) to improve 
the OMP algorithm and improve the overall speed of the algorithm. 

First, based on the characteristics of the overcomplete atomic library, for the atomic 
parameters is , lu , pξ  and qc , when  i  in is  is from  i = 1  to  i = I,  the inner 

product of the atom and the signal to be decomposed , γy γ  are calculated I times. This 
process demands extensive computations. Therefore, to improve the overall speed of the 
algorithm, the I times of inner product operation is converted into a one-time 
cross-correlation operation between y  and rg , which can significantly reduce the number 
of computations, i.e., 

 , = ,
r iy gR y gg    (25)         
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Although the conversion of a large number of inner product calculations into a small 

number of cross-correlation operations improves the overall efficiency of the algorithm, to 
further reduce the number of computations and algorithm runtime, as well as speed up the 
process of the cross-correlation operation, this paper proposes the use of an FFT. 

Because the majority of the computations of the above algorithm are generated during 
the calculation of the inner product , γy γ , the FFT is applied to speed up the algorithm 
process. This can not only quickly achieve cross-correlation operations, it can also 
significantly improve the speed of the atomic sparse decomposition and thus the entire 
algorithm process. 

3.2.2 Algorithm evaluation criteria 
In a power system, because the phasor is divided into the amplitude and phase, there is also a 
difference between the amplitude and phase errors when evaluating the PMU. In the IEEE 
Std C37.118-2011 standard [27], an effective method for evaluating the phasor measurement 
error of the synchronous phasor measuring device generally adopts a total vector error (TVE). 
Using the TVE indicator to measure the PMU is not only more scientific and comprehensive, 
it also accurately reflects the performance of the algorithm, which is conducive to visually 
compare the performance of other phasor measurement methods. 

The TVE is defined as follows: 
 

 

[ ] [ ]2 2

2 2

( ) ( )R R I I

R I

X n X X n X
TVE

X X
− + −

=
+  

(26) 

 
where RX  is the real part of the ideal signal phasor, IX  is the imaginary part of the ideal 
signal phasor, )(nX R  is the actual part of the measured phasor, and )(nX I  is the imaginary 
part of the measured phasor. 

The smaller the value of the TVE, the closer the phasor measurement is to the true value, 
and the more accurate the performance of the phasor measurement algorithm. Therefore, the 
performance of the algorithm can be accurately measured based on the TVE value. 
 

4. Simulation Results and Analysis 
In power systems, power signals are often affected by a system failure or instability of the 
power unit, resulting in a large amount of harmonic components in the signal, or 
low-frequency oscillations and amplitude or phase steps. Therefore, to accurately evaluate 
the performance of the algorithm, a representative power signal model was established to 
simulate the phasor measurement of the actual power system signal under dynamic 
conditions. In this manuscript, four dynamic signal models were established as experiment 
objects, namely, low-frequency oscillating signals, harmonic-containing power signals, 
amplitude step signals, and phase step signals. The signals in this article were generated 
using a programmable power supply (Chroma PROGRAMMABLE AC SOURCE 61511, as 
shown in Fig. 1) and analyzed in LABVIEW and MATLAB. 
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Fig. 1. Chroma 61511 

4.1 Comparison of dictionary parameters 
Using the Chirplet dictionary in the framework of the compressed sensing algorithm and 
comparing it with a Gabor dictionary, a better Chirplet dictionary is determined as a sparse 
dictionary, and the corresponding reasons are provided. Two dictionaries were used to 
compare the sparse reconstruction of power signals containing harmonics generated using 
Chroma 61511, as shown in Fig. 2. 
 

 
Fig. 2. Harmonic signal 
 

The calculation time and the number of atoms required for sparsity was taken as the 
index of the sparsity effect, and through a comparison, it can be seen that under the sparse 
processing of the same signal, the Chirplet dictionary significantly reduces the number of 
atoms required for the sparse processing, reduces the number of operations, reduces the 
operation time, and significantly improves the efficiency of the sparsing and reconstruction. 
The running time comparison for the sparse processing between Gabor and Chirplet 
dictionary shows in Fig. 3. And the number of atoms required for the sparse processing 
between Gabor and Chirplet dictionary shows in Fig. 4.  
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Fig. 3. Running time comparison 
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Fig. 4. Comparison of required atomic numbers 

 

4.2 Phasor measurement of low-frequency oscillation signals 
Under low-frequency oscillation conditions, the signal model was set to 
 

 [ ]0( ) ( ) cos 2 ( )π φ= ⋅ +x t a t f t t    (27)  
   

where ( )a t  is the amplitude, ( )φ t  is the phase, 0f  is the fundamental frequency, and 
0 =50f  Hz. 

Because the amplitude and phase of the power signal are usually time-varying, the 
amplitude and phase were set as ( )a t  and ( )φ t , respectively. 

 
 0 1( )= cos(2 )π+ aa t a a f t  (28) 
 

where 0 =1a , 1=0.1a , 0 = / 4φ π , 1=0.1φ , and 50aff f= =  Hz. The waveform of the 
oscillating signal is shown in Fig. 5. 
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Fig. 5. Low-frequency oscillation signal waveform 

 
In this manuscript, phasor measurements of low-frequency oscillation signals were 

carried out using the CS algorithm, the traditional DFT algorithm, and the improved DFT 
algorithm described in [20], and the measured value of the phasor was compared with the 
theoretical value to obtain the amplitude, phase error, and TVE value at each moment. As 
can be seen from Fig. 6, the traditional DFT algorithm shows an obvious oscillation 
phenomenon during the entire phasor measurement process, and both the amplitude and 
phase errors are large, the maximum value of TVE is approximately 5%, whereas the error of 
the amplitude or phase of the improved DFT algorithm is clearly reduced, and the maximum 
value of the TVE is only approximately 2%. Compared with the improved DFT algorithm, 
the amplitude and phase errors of the CS algorithm are obviously smaller and more stable, 
and the TVE value is kept below 0.5%, which meets the precision requirements of the 
standard IEEE-37.118.1-2011 for the phasor measurement of the oscillation signal of the 
PMU. 

 
 

 
(a) Amplitude measurement error of low-frequency oscillation signal 
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(b) Phase measurement error of low-frequency oscillating signal 

 
(c) TVE measurement of low-frequency oscillation signals 

Fig. 6. CS and DFT algorithm measurement results for low-frequency oscillation signals 
 

4.3 Phasor measurement of harmonic signals 
Non-linear loads in power systems often cause a distortion of the waveforms of the voltage 
and current signals, which cause a large amount of harmonic components in the power signal, 
and are usually also interfered with by noise. It was therefore assumed that the amplitude and 
phase of the time-varying power signals were included in the noise, along with the third, fifth, 
and sixth harmonic components. The test signal model is then 

 

 
[ ] [ ]

[ ] [ ]
0 0

0 0

( ) ( ) cos 2 ( ) +0.1 ( )cos 2 3 ( )

0.1 ( ) cos 2 5 ( ) +0.1 ( )cos 2 6 ( )

π φ π φ

π φ π φ

= + + +

+ +

+ n

x t a t f t t a t f t t

a t f t t a t f t t
R

        (29) 

 
In the formula below, nR  is a Gaussian white noise component with a signal-to-noise ratio 
of 50 dB. 

Because the test signal contains harmonic and interference noise components, such 
components need to be filtered out for an accurate measurement of the phasor value. A 
waveform comparison analysis diagram of the oscillating power signal containing harmonics 
and noise, the original power signal, and the output signal of the filtering system is shown in 
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Fig. 7. It can be seen from Fig. 7 that when the original power signal contains harmonics, the 
LMS adaptive filter can effectively filter out harmonic components and interference noise, 
and obtain a more precise output signal. 

 

 
(a) Power signals containing harmonics and noise 

 

 
(b) Original power signal 

 

 
(c) Filter system output signal 

Fig. 7. Filtering results of power signals with harmonics and noise 
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The phasor measurement results of the CS algorithm, traditional DFT algorithm, and 
improved DFT algorithm for power signals with harmonics and noise are shown in Fig. 8. It 
can be seen that, during the initial stage of the phasor calculation, the traditional DFT 
algorithm has a large estimation error, which may be caused by slight fluctuations in the 
output of the filter system. However, even with the stability of the system output signal, a 
large error still exists in the phasor measurement, the TVE of traditional DFT algorithm 
exceeds 2%. The improved DFT algorithm obviously reduces the estimation error of the 
amplitude and phase, and the TVE is only approximately 1%. According to the phasor 
measurement results of the CS algorithm, the error values are smaller than those of the 
traditional and improved DFT algorithm, and tend to be stable. It can be seen that the 
proposed algorithm has good stability and a high measurement accuracy. 

 
 

 
(a) Amplitude measurement error of power signals containing harmonics and noise 
 
 

 
(b) Phase measurement error of power signals containing harmonics and noise 
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(c) TVE measurement of power signals containing harmonics and noise 

Fig. 8. Measurement results for CS and DFT algorithms for harmonic signals with harmonics and 
noise 

 

4.4 Phasor measurement of amplitude step signals 
The voltage and current signals in the power system are affected by system disturbances and 
line faults in practical applications, resulting in a step change in the amplitude or phase of the 
power signal. To simulate this situation, the amplitude of the voltage signal at the rated 
power frequency (50 Hz) was stepped at t = 0.1 s, and the amplitude step test signal model 
was 
 
        0 0

0 0

cos(2 ) 0.1
( )

cos(2 ) 0.1
π φ
π φ

⋅ +
=  ⋅ +

m

t

A f t t s
x t

A f t t s
＜

≥
 (30) 

 
In the formula, 0 =0.25φ π  is the initial phase, and =1mA  represents the rated amplitude; in 
addition, tA  is the magnitude of the amplitude after the mutation. According to the IEEE 
standard, in the amplitude step test, the step of the signal amplitude must be 10% of the rated 
amplitude, and therefore =1.1tA . The amplitude step signal waveform is shown in Fig. 9. 
 

 
Fig. 9. Amplitude step signal waveform 
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Fig. 10 shows the measurement error results of the CS algorithm, traditional DFT 

algorithm, and improved DFT algorithm for the amplitude step signal. It can be seen from 
Fig. 10 that, compared with the CS algorithm and improved DFT algorithm, the traditional 
DFT algorithm produces a large measurement error at the time of the amplitude step. The 
amplitude error, phase error, and TVE value of the CS algorithm are smaller than the 
traditional DFT and improved DFT algorithm within the 0–0.255 s period. In addition, the 
error values of the CS algorithm tend to be stable. Therefore, the CS algorithm has a superior 
measurement accuracy and stability. 

In addition, in the step response test, the most important performance indicator is the 
response time. The response time refers to the period from the time when the measurement 
error is beyond the precision range to the time when the measurement error is less than the 
precision range. In this test, the response time of the CS algorithm was 8 ms, which satisfies 
the requirement of a response time of less than 30 ms, whereas the response time of the 
traditional DFT algorithm is 64 ms and the response time of the improved DFT algorithm is 
41 ms. It can be seen that the step response performance of the CS algorithm is the best. 

 
 

 
(a) Amplitude measurement error of the amplitude step signal 

 

 
(b) Phase measurement error of the amplitude step signal 
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(c) TVE measurement of the amplitude step signal 

Fig. 10. CS and DFT algorithm measurement results for amplitude step signals 
 

4.5 Phase measurement of phase step signals 
Similar to the amplitude step signal, the phase step signal is an abrupt change of phase. The 
test signal model is 
 

        0 1

0 2

cos(2 ) 0.1
( )

cos(2 ) 0.1
π φ
π φ

+
=  +

f t t s
x t

f t t s
＜

≥  
(31) 

 
In the formula, 1=0.1φ π and 2 =0.2φ π . The test signal undergoes a phase change at t = 0.1 s 
to achieve a phase step of the signal. The phase step signal waveform is shown in Fig. 11. 
 

 
Fig. 11. Phase step signal waveform 

 
For the phase step signal, Fig. 12 shows the measurement error results of the CS 

algorithm, traditional DFT algorithm, and improved DFT algorithm. It can be seen from Fig. 
12 that, compared with the traditional and improved DFT algorithm, the measurement error 
of the CS algorithm is small within the entire signal mutation process, and the traditional 
DFT algorithm not only has a large measurement error at the phase step time, but also during 
the entire measurement period, creating a large fluctuation in the amplitude, phase error, and 
TVE value. Although the amplitude and phase measurement errors of the improved DFT 
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algorithm are smaller than those of the traditional DFT algorithm, the accuracy is still lower 
than that of the CS algorithm, and therefore, it can be considered that the CS algorithm has a 
high measurement accuracy and good stability.  

In addition, to further compare and analyze the performance of the three algorithms, the 
response times of the three algorithms were separately measured. As shown in Fig. 12, the 
measurement results of the proposed algorithm start to respond at 0.101 s, the recovery 
convergence time is 0.119 s, and the response time of the entire algorithm is 7 ms, which 
satisfies the requirements of the phase step response time. The response time of the 
traditional DFT algorithm is 46 ms, and the response time of the improved DFT algorithm is 
29 ms, which are still longer than the response time of the CS algorithm, thus indicating that 
the step response performance of the proposed algorithm is better than both the traditional 
DFT algorithm and the improved DFT algorithm. 

 
 

 
(a) Amplitude measurement error of the phase step signal 

 

 
(b) Phase measurement error of the phase step signal 
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(c) TVE measurement of the phase step signal 

Fig. 12. CS and DFT algorithm measurement results for phase step signals 
 
 

5. Future studies 
 

In a future study, we will continue to try to reduce the phasor measurement error of various 
signals through the compressed sensing algorithm, and continue to optimize the stability of 
the algorithm during the calculation process. The specific ideas are as follows: 

1) Optimization of a sparse dictionary: To reduce the number of atoms needed during 
the sparse process and further improve the operation efficiency, we try to find the atoms that 
match the power signal better or optimize the parameters of the Chirplet atoms during the 
sparse process. 

2) Optimization of signal filter: In this paper, the filter effectively filters out the 
harmonics and noise of the signal; however, the power system structure is complex, and the 
signal will be affected by a variety of complex perturbations, and thus we will optimize the 
filter to improve the ability of the signal to resist external interference. 

6. Conclusion 
In this paper, a dynamic synchronous phasor measurement algorithm based on compressive 
sensing was proposed. The algorithm was verified using the MATLAB simulation tool with 
reference to the IEEE standard. The following conclusions were obtained: 

1) Compared with the traditional sparse dictionary of power signals, using the Chirplet 
dictionary to sparse the signal can greatly reduce the number of required atoms, reduce the 
computation time, and improve the computational efficiency. 

2) In this study, the application of compressive sensing theory in the field of 
synchronous phasor measurement not only improves the phasor measurement accuracy of 
the power signals, but also effectively reduces the amount of sampled data, which is 
beneficial to the real-time transmission and processing of power signals. 

3) By measuring the phasor of a low-frequency oscillation signal, a 
harmonic-containing power signal, an amplitude step signal, and a phase step signal, it was 
verified that the proposed synchronous phasor measurement algorithm based on compressive 
sensing has good dynamic conditions, being adaptive and consistent with the standards and 
requirements for a phasor measurement. 
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